Numerical FEM Models of Bio-heat Transfer for Magnetic Fluid Hyperthermia Treatments

Febri Dwi Irawati, Agus Kartono

Abstract


Numerical solutions using the Finite Element Method (FEM) of one-dimensional bio-heat transfer of healthy and cancerous tissue together with the Magnetic Fluid Hyperthermia treatment have been worked out successfully. Each layer shows the characteristics of tissue. Each layer represents an independent biological tissue characterized by temperature-dependent physiological parameters and linear temperature-dependent metabolic heat generation. Magnetic fluid hyperthermia (MFH) is used as an external heat source to heat the cancerous area. In a transient state MFH treatments can heat up cancerous tissue without damaging healthy tissue as indicated by an increase in the temperature of the cancer tissue according to the standard temperature of the MFH treatments.

Keywords


bio-heat transfer, finite elemen method, heat generation, Magnetic Fluid Hyperthermia, temperature, tissue.

Full Text:

PDF

References


Pennes H. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1 (2) : 93–122. doi : 9714612

Sheu Tony W.H, Maxim A. Solovchuk, Alex W.J. Chen, Marc Thiriet. (2011). On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor. Int J Heat Mass Transfer. 54: 4117–4126. doi: 10.1016/ j.ijheatmasstransfer.2011.03.045.

Habash RWY, Bansal R, Krewaski D, Alhafid HT. (2006). Thermal therapy part-I: an introduction to thermal therapy. Crit Rev Biomed Eng. 34(6):459–489.

Bernard M Claude. (1876). Lecons sur la chaleur animale sur les effets de la chaleur et sur la fievre. Paris : Avec Figures Intercalees Dans Le Text.

Craciunescua O.I, P.R. Stauffer, B.J. Soher, C.R. Wyatt, O. Arabe, P. Maccarini, S.K. Das, K.S. Cheng, T.Z. Wong, E.L. Jones, M.W. Dewhirst, Z. Vujaskovic, J.R.MacFall. (2009). Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Med. Phys. 36 : 4848 – 4858. doi : 10.1118/1.3227506.

Gallermann J, W. Wlodarczyk, A. Feussner, H. Fahling, J. Nadobny, B. Hildebrandt, R. Felix, P. Wust. (2005). Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. Int. J. Hyperther. 21(6) : 497–513. doi : 10.1080/02656730500070102.

Giordano M A, G. Gutierrez, C. Rinaldi. (2010). Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia. Int. J.Hyperther. 26 (5): 475–484. doi : 10.3109/02656731003749643.

Lin CT, K.C. Liu. (2009). Estimation for the heating effect of magnetic nanoparticles in perfused tissues. Int. Commun. Heat Mass Transfer. 36: 241–244. doi : 10.1016/j.icheatmasstransfer.(2008).11.006.

Okajima Junnosuke, S. Maruyama, H. Takeda, A. Komiya. (2009). Dimensionless solutions and general characteristics of bioheat transfer during thermal therapy, J. Therm.Biol. 34: 377–384. doi : 10.1016/j.jtherbio.2009.08.001.

Durkee J.W, P.P. Antich, C.E. Lee. (1990). Exact-solutions to the multiregion timedependent bioheat equation 1: solution development. Phys. Med. Biol. 35(7): 847–867. doi: 0031-9155/35/7/004.

Durkee J.W, P.P. Antich. (1991). Characterization of bioheat transport using an exact solution to the cylindrical geometry, multiregion, time-dependent bioheat equation. Phys. Med. Biol. 36(10): 1377–1406. doi: 0031-9155/36/10/006Bagaria, 2005

Salloum M, R.H. Ma, L. Zhu. (2008). An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia. Int J Hyperther. 24(7): 589–601. doi : 10.1080/02656730802203377.

Rodrigues D B, P.J.S. Pereira, P. Limão-Vieira, P.R. Stauffer, P.F. Maccarini. (2013). Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications. Int J Heat Mass Transfer. 62:153–162. doi: 10.1016/j.ijheatmasstransfer.2012.11.082.

Sarkar Daipayan, A. Haji-Sheikh, Ankur Jain. (2015). Temperature distribution in multi-layer skin tissue in presence of a tumor. Int J Heat Mass Transfer. 91 : 602–610. doi : 10.1016/j.ijheatmasstransfer.2015.07.089.

Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. (1957). Selective inductive heating of lymph. Ann Surg. 146:596–606.

Kartono A. Febri Dwi I, Tony S. (2018). Numerical solution of one-dimensional bio-heat transfer on human head tissue problem by finite element method. JP Journal of Heat and Mass Transfer. 15: 433 – 456. doi : 10.17654/HM015020433.

Sheu Tony W.H, Maxim A. Solovchuk, Alex W.J. Chen, Marc Thiriet. (2011). On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor. Int J Heat Mass Transfer. 54: 4117–4126. doi: 10.1016/ j.ijheatmasstransfer.2011.03.045.

Pozrikidis, Constantine. (2014). Introduction to Finite and Spectral Element Methods Using MATLAB. Second Edition-CRC Press.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.


Supported by :







Indexed by :