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Abstract 

One factor that affects the performance of a PEM fuel cell is the water content in the fuel cell membrane. The membrane water content 

is influenced by the humidity of the reactants that flow into the cell. In this study, a membrane humidifier is used to control the relative 

humidity of reactants fed into a PEM fuel cell. The result was that liquid water on the anode side of PEM fuel cells occurred at 

temperatures from 353 to 363 K. At temperatures below 353 K, the water from the anode output was in the vapor phase. When the relative 

humidity at the cathode (RHC) and the relative humidity at the anode (RHA) were 90%, there was an increase in performance, and liquid 

water formation at the cathode occurred at temperatures from 303 K to 333 K. When the temperature was increased above 333 K, the 
effects on the cell performance and on the liquid water formation were not significant. 
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1. INTRODUCTION 

Management of the water in the stack is an important 

problem in the operation and optimal performance of a fuel 

cell. It is necessary to balance the water in a fuel cell stack 

to ensure that the membrane remains in a hydrated state and 

to prevent flooding on the cathode side and dehydration of 

the anode side [3-5]. Several studies investigating the 

influence of water imbalances on PEM fuel cell systems 

have shown that small amounts of water in the stack will 

cause the membrane to become dry and cracked. 

Conversely, a significant amount of water will cause liquid, 

and consequently, the cathode side becomes flooded [6, 7]. 

The various roles of water in PEM fuel cell stacks are 

contradictory. Water is needed to ensure good conductivity 

for membrane protons. However, water also prevents  

protons from accessing the catalyst surface, which results 

in a lower reactivity value in the catalyst layer and thus 

increases the value of the activation polarization [8-10]. 

The water content in the membrane is determined by the 

balance between water production and water transport 

processes such as electro osmotic drag (EOD), which is 

related to the transfer of protons through the membrane, 

back diffusion from the cathode, and the diffusion of water 

between the oxidant and fuel [11, 12]. This study focuses 

on the liquid water formation flowing from the stack and 

the performance of PEM fuel cells. This condition is based 

on the balance of water in the system, which is affected by 

several factors, such as the relative humidity at the anode 

(RHA) and the cathode (RHC), the operating temperature 

and pressure, and the stoichiometric ratio of hydrogen and 

oxygen. The purpose of this study was to determine the 

effect of operating conditions on the performance of the 

system and the amount of liquid water flowing from the 

anode and cathode. The regulation of water balance settings 

can be predicted using a mathematical model. 

2. DESIGN OF THE EXPERIMENT 

In this study, a model was developed on the basis of 

several assumptions: the relative humidity of the gas 

exiting the membrane humidifier is similar to the relative 

humidity at the gas inlet of the fuel cell, all the reactant 

gases in the PEM fuel cell system are ideal gases, the PEM 

fuel cell system operates at a steady state, the PEM fuel cell 

system is under isothermal conditions, there are negligible 

pressure drops in the PEM fuel cell stack, The water 

flowing into the stack is in the gas phase. 

To sufficiently hydrate the membrane, water is usually 

admitted into the cell by using various methods such as 

liquid injection, steam introduction, and humidifying 

reactants before they enter the cell. In this study, the 

method used involved adding an external humidifier to 

humidify the reactant gases before they flow into the cell, 

as shown in Fig. 1. The external humidifier used in this 

system is a type of membrane humidifier that does not 

require heat to generate steam to achieve the appropriate 

humidity. The membrane humidifier in this study performs 

two functions. The first function is to set the humidity of 

the hydrogen before it flows into the anode side at 

membrane humidifier 1(MH1). 
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Fig. 1. Humidify the reactant gases before flow into the cell 

The second function is to set the humidity of the 

oxygen before it flows into the cathode side at membrane 

humidifier 2 (MH2). The components that flow from the 

anode are hydrogen and water (vapor and liquid phase), and 

they are used again as reactants and fed to the anode side. 

Before entering the anode, hydrogen humidity control 

occurs in MH1. The water vapor used to control the 

humidity of the hydrogen is obtained from the water vapor 

from the cathode. The products flowing from the cathode 

are water (vapor and liquid phase), oxygen and nitrogen. 

The humidity of the air flowing from MH1 must be 

controlled at MH2 to achieve the appropriate humidity 

before it flows into the cathode side. The membrane water 

content depends on several factors, such as the relative 

humidity of the reactants on the anode side and the cathode 

side, the operating temperature and pressure, and the 

stoichiometric ratio of hydrogen and oxygen.  

4. MATHEMATICAL MODEL  

4.1 Water vapor in the reactants 

Because the relative humidity , is the measured 

parameter in the experiment, it is necessary to know the 

relationship between the mole fraction and the relative 

humidity. The mole fraction of water vapor is defined as 

follows [30]: 

  (1) 

The amount of water vapor in the hydrogen supplied to the 

anode inlet is defined as follows: 

 (2) 

 

The amount of water vapor in the oxygen supplied to the 

cathode inlet is defined as follows: 

  (3) 

 

The relative humidity at the anode and cathode are 

assumed to be 100% RH with no significant pressure drop. 

The concentrations of the water vapor at the anode and 

cathode gas outlets are defined as follows: 

        (4) 

 

    (5) 

 

4.2 Water diffusion in a PEM fuel cell 

The number of protons that transfer from the anode to 

the cathode side by EOD  can be calculated using the 

following equation [29, 31, 32]: 

   (6) 

 

where  is the coefficient of EOD;  can be defined 

using the following equation: 

   (7) 

where is thewater content ofthe membrane and can 

be calculated using the following equation: 

  (8) 

where  is the membrane water activity. 

 

Hassan et al. [30] expressed the water that diffuses from the 

cathode side to the anode side as follows: 

   (9) 

where  is the moisture flux across the membrane,  is 

the mass transfer coefficient,  is the molar moisture 

content at the anode, and is the molar moisture content 

on the cathode side. 

4.3 Performance of a PEM fuel cell 

The cell voltage value in the operation of a system is: 

  (10) 

 

 (11) 

 

4.3.1 Reversible voltage ( ) 

The reversible voltage in a PEM fuel cell is [33-35] 

 (12) 

The electrical potential at standard conditions 

is , and the electrical potential in PEM fuel 

cells is: 

   (16) 

 

 

 

4.3.2 Activation voltage ( ) 

The voltage loss by the activation is caused by the 

slow reaction taking place at the electrode surface. This 

loss occurs because the cell requires energy to transfer 
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electrons, namely, the activation energy that is required at 

the anode and the cathode[36]. The rate of reaction is: 

     (38) 

If , then equation (17) can be written as: 

 

                    (13) 

 

In the case of electron transfer, the two forms of 

equation (13) are aggregated into one factor, which is also 

known as a symmetry factor [22]. Using a symmetry factor 

(denoted as α) when oxygen is reduced, the following 

expression is obtained: 

                             (14) 

For oxidative symmetry, the factor  is used instead: 

 (41) 

 

Under standard conditions, ,  and 

. Equations (14) can be written as: 

 

                                                        (15) 

 

and                     

(16) 

 

By substituting equations (15) and (16), which is also 

known as the Butler–Volmer equation, the reaction 

concentration in the cell becomes: 

                    

(17) 

 

At equilibrium, it is assumed that 

 

                    (18) 

 

                                         (19) 

 

By substituting equation (19) into equation (18), the The 

change in the current density is: 

                                 (20) 

 

A comparison of Equation (21) with the reference current 

density yields: 

                 (21) 

where 

 and  

The value at a given temperature relative to the reference 

temperature can be written as: 

                             (22) 

Equation (22) can then be written as: 

 

 

                                           (23) 

The  value influenced by the reaction surface as a per-unit 

volume of catalyst layer is [37] 

        (24) 

 

 = reactant (H2 and O2) and 

 = activation energy (76.5 kJ/mol) [38]. 

Song [39] defined the value of as: 

                                                      (25) 

The value of was determine by Song [40] to be: 

                                           (26) 

 

where Y= % Pt. 

According to Inoue [41]and Song [39], the reference 

current density is: 

                                   (27) 

The current density from equation (17) is: 

      (28) 

 

If is compared with , equation (20) becomes: 

 

                                                     (29) 

For , the value becomes: 

(30) 

 

The voltage activation [36, 42] is: 

                     (31) 

 

According to Gorgun [42], the  value is dependent on 

the temperature, pressure, type of catalyst, specific surface 

area and loading. The value ranges from10
-8

A to 10
-

2
A.The Tafel constant can be obtained: 

                 where  = the Tafel constant. 

The value of the Tafel constant is based on data 

obtained from a study conducted by Mann [43]and was 

determined based on the following expression: 

                                    (32) 

The value of the exchange coefficient value α was obtained 

from Zhang [44]: 

           (33) 
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is the relative humidity of the reactants that 

flow into the cathode side. The over potential is caused by 

the reaction kinetics at the anode and the cathode because 

of the slow reduction of oxygen gas at the cathode. 

Therefore, the loss of voltage from the activation over 

potential is generally more dominant at the cathode [35]. 

4.3.3  Ohmic voltage ( ) 

The loss caused by the ohmic resistance in the 

membrane and the catalyst layer is a function of 

temperature and humidity [37]. The ohmic voltage that is 

lost was presented by Kunusch [36] as: 

              where the  value is: 

                                                                       (34) 

 is the resistance in the cell, which depends on the 

humidity and temperature of the cell membrane (V). The 

membrane proton conductivity can be written as [45, 46] 

 

 

                                           (35) 

where is the water content in the membrane. 

 (36) 

 

where is the average relative humidity in the cell. 

4.3.4  Concentration voltage ( ) 

A concentration voltage loss occurs when the electrode 

reactions are hindered by the mass transfer of reactants into 

the cell [47] because the quantity of reactants required for 

the reaction is insufficient. The concentration voltage was 

presented by Shaker [34] as: 

                              (37) 

where = the limiting current density , which is the 

maximum current density. The limiting current density for 

the cell is [48]: 

                            (38) 

is the concentration of oxygen entering and 

exiting a cell (mol), and is the convective mass transfer 

coefficient (m s
-1

). 

 

The convective mass transfer coefficient can be written as 

[49]:                                                            (39) 

5. RESULTS AND DISCUSSION 

The operating conditions used in the PEM fuel cell 

involve RHA and RHC values from 0 to 100%, changes in 

the current density from 0.1A/cm
2 

to 0.9 A/cm
2
, a 

stoichiometry ratio for hydrogen of 1.2 and for oxygen of 2, 

and a pressure at the anode and cathode of 1atm. 

 

5.1 Effect of the relative humidity on the flow  of condensed 

water from the anode 
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(b) 

Fig. 2. The relationship between the RHA and  liquid water from 

the anode at a temperature of 353 K:(a) RHC= 10% and (b) 

RHC= 30% 

 

Fig. 2 shows the RHC is greater than 30%, then the 

water flowing from the anode side is in the vapor phase. 

Saturated water formed when the RHA was 60% and the 

RHC was 10% and when the RHA was 68% and the RHC 

was 30%. Fig. 3 shows the water flowing from the anode 

side at RHC values above 70% is in the vapor phase. 

Increases in the RHC affect the liquid water formation at 

values greater RHA. The operating conditions are as 

follows: the RHC is 10% and the RHA is 35%, the RHC is 

50% and the RHA is 45%, and the RHC is 70% and the 

RHA is 55%. The water flowing from the anode side is in 

the vapor phase for all conditions under this RHA. Figs 2 

and 3 show the flow of liquid water from the anode side of 

PEM fuel cells at temperatures from 353 to 363 K. At 

temperatures below 353 K, the water flowing from the 

anode side is in the vapor phase. 
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(b) 

Fig. 3. The relationship between the RHA and liquid water from 

the anode at T 363 K: (a) RHC= 50% and(b) RHC=70% 

 

5.2 Effect of the relative humidity on the flow  of liquid 

water formation from the cathode 

0.75 0.8 0.85 0.9 0.95 1
0

1

2

3

4

5

6

7

8
x 10

-5

RHA (%)

L
iq

ui
d 

w
at

er
 o

ut
 th

e 
ca

th
od

e

(g
/c

m
2  s

)

 

 

I = 0.1 A/cm2

I = 0.3 A/cm2

I = 0.5 A/cm2

I = 0.7 A/cm2

I = 0.9 A/cm2

 
Fig. 4. The relationship between the RHA and liquid water 

from the cathode at a temperature of 363 K and 90% RHC 

 

Fig. 4 shows the water flowing from the cathode is in 

the vapor phase if it has a maximum relative humidity of 

100%. At a temperature of 363 K with a RHC of 90%, 

liquid water occurs when the RHA is in the range from 

77% to 100%. Water saturation starts when the RHA is 

77%. Below 77% RHA, the water flowing from the cathode 

is in the vapor phase. Fig. 5 shows the saturated water 

began to form on the cathode side of the PEM fuel cells at 

75% RHC, and below this value, the water flowing from 

the cathode is in the vapor phase. At 90% RHC, all of the 

water flowing from the cathode is liquid water. This occurs 

because most of the water flowing from the cathode is at 

90% RHC. The effect is that water forms directly, liquid 

water, and flows from the cathode side at low RHA. 
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(b) 

Fig. 5. The relationship between the RHA and liquid water from 

the cathode at a T 353 K: (a) RHC= 70% and (b) RHC= 90% 
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(b) 

Fig. 6. The relationship between the RHA and liquid water from 

the cathode at T 343 K: (a) RHC= 50% and (b) RHC= 90%. 

 

Fig. 6 shows at 50% RHC with 0% RHA, saturated 

water began to form. This describes the condition of the 

water flowing from the cathode that has a relative humidity 

of 100% and is saturated.  
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(b) 

Fig. 7. The relationship between the RHA and liquid water liquid 

from the cathode at a temperature of 333 K:  (a) RHC= 10% and 

(b) RHC= 90% 

 

Fig. 7 shows the flow of liquid water from the cathode 

at a temperature of 333K. Increases in the RHC cause 

greater amounts of liquid water formation. Liquid water 

formed in the range from10 to 90% RHC for all values of 

the current density. When the RHC is 10%, liquid water 

occurs in the range from 12 to 100% RHA. Under 12% 

RHA, the water flowing from the anode side is in the vapor 

phase. At 90% RHC, liquid water occurs in the range from 

0 to 100% RHA. Water flowing from the cathode side is 

liquid water  if the RHC is 90%. The amount of liquid 

water varies and depends on the value of the current 

density. The amount of liquid water formation is higher 

when the value of the current density is large. 
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(b) 

Fig. 8. The relationship between the RHA and liquid water from 

the cathode at a T 323 K: (a) RHC= 10% and (b) RHC= 90% 

 

Fig. 8 shows the liquid water formation at a 

temperature of 323 K. Under these conditions, the liquid 

water occurs in the range from 10 to 90% RHC and from 0 

to 100% RHA. The amount of liquid water formation at the 

lower RHA depends on the value of the current density. 

The higher the current density, the greater the amount of 

liquid water flowing from the cathodes of the PEM fuel 

cells. Figs 4 to 8 show that when the operating temperature 

decreases from 363 to 323 K, liquid water formation on the 

lower RHC. This condition occurs because at high 

temperatures, the amount of water vapor flowing out of the 

cell with the oxygen is unable to reach a relative humidity 

of 100%. A decrease in the operating temperature causes a 

lower amount of water vapor to be necessary to reach 100% 

relative humidity, and the liquid water increases. 

5.3. Effects of voltage changes on liquid water at the anode 

when the current density is fixed 

In this section, any change in the value of the voltage 

was followed by changes in the RHA, and the current 

density was fixed at 0.5A/cm
2
.  

 
(a) 

 
(b) 

Fig. 9. The relationship between the performance and liquid water 

from the anode at a T 363 K: (a) 50%RHC, and (b) 90% RHA 

 

Fig. 9 shows at a fixed RHC, a higher voltage results in 

the formation of a smaller amount of liquid water. After 

decreasing the voltage, the RHA was increased at the same 

current density. The result is an increase in the amount of 

water on the anode side when the voltage drops at a fixed 

current density. Increasing the RHC resulted in an increase 

in the value of the voltage produced. To achieve a high 

voltage, it is necessary for more water vapor from the 

anode side to move (together with protons) in the EOD 

phenomenon. As a result, the amount of water on the anode 

side is reduced, so the amount of liquid water flowing from 

the anode is reduced. A low amount of liquid water is 

obtained at 363 K with 58% RHA and 80% RHC, while the 

temperature of 353 K occurs at 17% RHA and 40% RHC. 
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At temperatures below 353 K, all of the water flowing from 

the anode side is in the vapor phase.  

 

5.4. Effects of voltage changes on liquid water at the anode 

with changes in the current density 

 
(a) 

 
(b) 

Fig. 10. The relationship between the performance and liquid 

water from the anode at T 353 K: (a) RHC= 10% and (b) RHC= 

30% 

 

Fig. 10 show the increasing the RHA did not cause a 

significant increase in the performance of the PEM fuel 

cells. Decreasing the value of the voltage or increasing the 

current density resulted in an increase in liquid water 

produced at the anode side of the fuel cell. Increase in the 

RHA resulted in an increase in the amount of liquid water 

flowing from the anode. This condition occurs due to an 

increase in the RHA and the water vapor flowing into the 

anode. The effect is an increase in liquid water formation. 

However, the increase in the RHC causes an increase in 

fuel cell performance and reduces the amount of liquid 

water on the anode side. This condition occurs because the 

increase in the RHC causes an increase in the average 

amount of water in the membrane such that more protons 

and more water vapor move from the anode side to the 

cathode side. The effect of increasing the RHC on cell 

performance is a change in the value of the maximum 

current density from 0.9 A/cm
2 
at 10% RHC to 0.2 A/cm

2 
at 

50% RHC and 0.4 A/cm
2 
at 90% RHC. Liquid water occurs 

only in the range from 50 to 90% RHA. Water flowing 

from the anode is in the vapor phase below 50% RHA. At 

90% RHC, liquid water occurs only for 90% and 70% 

RHA. The water flowing from the anode is also in the 

vapor phase at 50% RHA. 

Fig. 11 shows the RHC values above 30%, the water 

flowing from the anode is in the vapor phase. This 

condition indicates that above 30% RHC and below 70% 

RHA, water flows from the anode in the vapor phase. At a 

low RHC, PEM fuel cells have a current density of 

approximately 0.7 A/cm
2
. However, when the RHC is 

increased to 30%, the current density approximately 1.4 

A/cm
2
, and at 70% RHC, it is approximately 1.6A/cm

2
. that 

the liquid water from the anode side is formed at 353 and 

363 K. At both of these temperatures under 70% RHA, the 

water flowing from the anode is in the vapor phase. 

5.5. Influence of the performance of PEM fuel cells on 

liquid water formation at the cathode 

Fig. 12 shows  the increased temperatures also affect 

the decrease in the amount of liquid water flowing from the 

cathode. This condition occurs because increasing 

temperatures cause increases in the amount of water in the 

vapor phase to achieve 100% relative humidity. As a result 

of this condition, the amount of water in the liquid phase 

flowing out the cathode is lower at higher operating 

temperatures. The increase in the RHA causes an increase 

in the amount of liquid water flowing from the cathode. 

This condition occurs due to an increased RHA, resulting in 

a small increase in the performance of PEM fuel cells. This 

condition can occur when the RHA is increased from 10 to 

90% at 323 K, which causes the maximum current density 

to increase from 0.13 A/cm
2 

to 0.19 A/cm
2
. Increases in the 

performance of the PEM fuel cell are shown by the increase 

in the amount of water vapor moving with protons in the 

EOD phenomenon. The effect of the increased performance 

is the production of more water in the reaction. Increasing 

the RHA caused an increase in liquid water formation. This 

behavior is observed at 50 and 90% RHA. Under these 

conditions, liquid water occurs from 303 to 333 K. At 

temperatures above 333 K, all the water flowing from the 

cathode is in the vapor phase. The current density at each 

condition shows that the resulting liquid water tends to 

have the same value even if there are differences in the 

RHC. The current density at each operating temperature is 

relatively similar, although the RHA values differ. The 

amount of liquid water formation at 90% RHC and 333 K 

is less than that at temperatures below 333 K. The amount 

of liquid water flowing from the cathode is higher when the 

current density is large. 

 
(a) 
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(b) 

Fig. 11. The relationship between the performance and liquid 

water from the cathode at 10% RHC:RHA = 50%, and (b) RHA = 

90% 

 

 
(a) 

 
(b) 

Fig. 12. The relationship between the performance and liquid 

water from the cathode at 50% RHC:(a) RHA =10%, (b) RHA= 

90% 

In Fig. 12, increases in the RHA causes liquid water to 

increase significantly. This behavior results in an increase 

in the amount of water flowing from the cathode side. The 

source of the water is the reaction. Increasing the operating 

temperature results in a decrease in the amount of liquid 

water flowing from the cathode. At temperatures from 303 

to 333 K, increased operating temperatures increase the 

fuel cell performance. The operating temperature increases 

with the current density below 0.6 A/cm
2 

showed a slightly 

increase in the amount of liquid water. Mean while, the 

temperatures of 333 and 343 K showed an increase in the 

amount of liquid water formation. This is evidenced by the 

high voltage and current density values. 

 

Fig. 13 shows the performance of PEM fuel cells increased, 

especially from 303 to 333 K. However, for temperatures 

above 333 K, the increases in performance were not 

significant. At 10% RHA and 343 and 353 K, the 

performance of the PEM fuel cells is slightly different. The 

cell performance is almost the same at 50% RHA. The fuel 

cell performance is the same at 90% RHA for operating 

temperatures of 353 K and 363 K, and the tendency is the 

same at 343 K. This condition indicates that the increases 

in the RHA, the RHC and the temperature have no effect on 

the increase in the performance of the PEM fuel cells. 

When the RHA is 10, 70 and 90% and the temperature is 

303, 313 and 323 K, the amount of liquid water flowing 

from the cathode is the same. At 343 and 353 K with 90% 

RHA, the same amount of water has a current density 

below 1 A/cm
2
. However, above 1A/cm

2
, there is little 

difference in the amount of liquid water formation.  

 
(a) 

 
(b) 

Fig. 13. The relationship between the performance and liquid 

water from the cathode at 90% RHC:(a)RHA = 50%, and (b) 

RHA= 90% 

5.6 Comparison of the amount of liquid water  

The results of this investigation were compared with 

experiments performed Cai [50]. The operating conditions 

in the system are shown in Table1. The increase in the 

relative water content in the anode causes an increased 

concentration of liquid water in the cathode. Fig. 14 shows 

the relationship between the current density and the total 

amount of water produced at the cathode. The conditions 

for the system operations are shown in Table 1. The 

increase in current density resulted in a higher total amount 

of water in the cathode, and increasing the RHA from 0 to 

75% caused an increase in the total amount of water in the 

cathode. 
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Table 1 

Research data used by Cai [50] 
Parameter  Value (by 

Cai) 

Relative humidity at cathode (RHC) 56% 

Relative humidity at anode (RHA) 0% and 75% 

Pressure at anode (PA) 2 atm 

Pressure at cathode (PC) 2 atm 

Cuurent density (i)  

Temperature (T) 333 K 

Stoichiometry of  hydrogen  1.1 

Stoichiometry of oxygen 2.5 

The active area of MEA 128 cm2 

Membrane Type Nafion 112 

Active area of MEA 128 cm-2 

Membrane thickness 0.0005 cm 

Current density 0.5 A cm-2 

 

 
Fig. 14. Comparison between this investigation with the study  

by Cai (2006) 

 

6. CONCLUSIONS 

 

1. Increasing the RHA causes an increase in the liquid 

water formation flowing from the anode and cathode, 

and increasing the RHC decreases the liquid water in 

the anode and increases liquid water in the cathode. 

 

2. Liquid water on the anode side of the cell occurs in the 

temperature range from 353 to 363 K. At temperatures 

below 353 K, the water flowing from the anode is in 

the vapor phase. Liquid water formation at a 

temperature of 353 K occurs in the range from 10 to 

30% RHC and from 61 to 100% RHA. At 363 K, 

liquid water occurs between10 and 70% RHC and 

from 35 to 55% RHA. 

3. Decreasing the operating temperature from 363 to 

323K on the cathode side causes liquid water to occur 

at lower RHC values. 

 

4. At 90% RHC and RHA, an increase in performance 

and liquid water from the cathode occurs at 

temperatures from 303 to 333 K. Increasing the 

temperature above 333 K did not have a significant 

effect on the performance and liquid water formation, 

and their values did not change. 

 

NOMENCLATURE 

 

 Surface area to unit volume ratio of the catalyst layer  

 Total surface area of the catalyst per unit mass of catalyst 

 

 Tafel constant 

 Concentration (mol) 

 Binary diffusion coefficient of O2 in N2 (cm/s) 

 Electrical potential (V)  

 Electrical potential at standard conditions (V) 

 Electrical potential of PEM fuel cells (V) 

 Faraday constant (96,485 C/mol electrons) 

 Gibbs free energy (J/mol) 

 Enthalpy (J) 

 Hydraulic diameter (cm) 

 Convective mass transfer coefficient (m s-1) 

 Current density (A cm-2) 

 Exchange current density (A cm-2) 

 Limiting current density(A cm-2) 

 References current density (A cm-2) 

 Reaction rate constant 

 Thickness of catalyst  

 Catalyst load  

 Number of electrons per hydrogen molecule 

 Number of cells 

 Concentration (mol) 

 Pressure (atm) 

 Partial pressure (atm) 

 Charge (Coulombs / mol) 

 Universal gas constant (J/mol K) 

 Reaction rate (mol/cm2 s) 

 Average relative humidity 

 Relative humidity of the reactants flowing into the cathode 

 Resistance in the cell ( ) 

 Entropy (J/g K) 

 Sherwood number 

 Temperature (K) 

 Dry membrane thickness (cm) 

 Reference temperature (K) 

 Voltage (V) 

 Maximum electrical work(J/mol) 

 Vapor mole fraction of H2O 

 Mole fraction of oxygen 

Y Pt percentage (%) 

 

Greek letters 

 Exchange coefficient 

 Membrane water content 

 Membrane proton conductivity (S cm-1) 

 Delta 

 Stoichiometry 
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