

Journal of Multidisciplinary Academic RESEARCH ARTICLE

122

© Copyright Kemala Publisher Science, Engineering and Social Science Series

 All rights reserved ISSN/e-ISSN: 2541 – 0369/2613 – 988X

Vol. 4, No. 2, 2020, Printed in the Indonesia

Performance Comparison between Direct Method and Tree-

code used in N-body Simulation using Python

 Muhammad Isnaenda Ikhsan1*
1Departement of Science, Institut Teknologi Sumatera

N-body simulation is a great tool to study the dynamics of many body system in astronomy. There a many method that could

be used to perform N-body simulation. In this study, we compare two methods such as a direct method and tree-code to

perform N-body simulation code over Python software. The advantages of direct method it’s very straightforward and could

be very accurate while the disadvantages are this method could take a lot of computational resources. In other hand, tree-code

could perform much better in term of computational time, but lack of accuracy and limited to certain cases application. The

result shows that performing N-body simulation using both method is very possible to be done in a computer with modest

specification. The direct method and tree code perform similarly in small number particles (N<50) case, but tree-code is

much faster as the number of particles increase (N>100). For N = 500, tree-code is 150% faster than direct method and for

N=1000, tree-code is 200% faster than direct method. In term of energy conservation, both methods perform well and similar.

Keywords: N-body, direct method, tree-code, python.

1. INTRODUCTION

Gravitational N-body simulations is a numerical solution

of N particles motions equations for interacting

gravitationally, are widely used tools in astrophysics, with

applications from few body or solar system like systems

all the way up to galactic and cosmological scales. Here,

this method could be applied to almost all astronomical

system, N-body simulation have many kinds of

variations. Different kind of simulation methods is

developed depend on the dynamical system which will be

studied.

The idea of simulating the dynamic of N-body system

started even before digital computer invented. Holmberg

use N-body simulation concept to study how tidal force

act on stars in galaxy encounter event [1]. The lightbulbs

were used to represent the stars and calculate the changes

of light fluxes to represent the gravity force, because both

light fluxes and gravity are inversely proportional to squa-
*Email Address: isnaenda.ikhsan@staff.itera.ac.id

re distance. As digital computer invented, one of the

pioneers of N-body simulation is Aarseth [2]. He used N-

body simulation to study dense stellar system such as

globular cluster and galaxy cluster [3,4,5]. Recently, N-

body simulation are widely to simulate the interaction of

massive objects e.g. black holes and neutron stars. Arca-

Sedda uses N-body simulations to observe the dynamic

evolution of multiple black holes in the area around

supermassive black holes [6]. In the cases that involving

massive objects such as black holes, a post-Newtonian

approximation is needed, which adds relativistic equation

in its gravity equation.

The simplest and most accurate N-object simulation

method is using the direct integration method [7].

However, this method does not suitable for the all N-body

system. For a system of particles with small N, this

method works well and fast, but as the value of N

increase, the computer resources used will be increase

significantly. Therefore, many other alternative methods

 RESEARCH ARTICLE Journal of Multidisciplinary Academic

123
 JoMA, Vol. 04, No. 02, 2020 No.0105/2020/05

Content from this work may be used under the terms

of the Creative Commons Attribution 3.0 license.

are developed that maybe are not as accurate as the direct

method but in terms of resource efficiency is far better

than the direct method. One of the alternative methods are

widely to use the tree-code method. Tree-code method is

better and efficient in terms of computational resource

used by the program compared to the direct method

because the computational operations required by the

tree-code method are far less than the direct method for

the same number of N objects [8].

Apart from the simulation methods, the selection of an

integrator for this simulation is also important in carrying

out N-object simulations. In the case of a system that has

a lot of N objects, it usually does not require a high level

of accuracy, so that it can use an integrator with

intermediate accuracy but fast in term of calculation.

Whereas in cases such as solar system, very high

accuracy is needed. In this domain, so called celestial

mechanics domain, very high accuracy is required to

correctly evaluate the perturbative terms and to avoid

being dominated by numerical noise such as time

discretization and round-offs errors

The purpose of this study is to show the performance of

N-body simulation that can be done on modern personal

computer using Python programming language. For the

sake of performance, N-body simulation code usually

written in Fortran or C, here we try to do the simulation

using Python to see how well the simulation could be

done.

The second part of this articles is to explain the

simulation methods, the third part is to show the result

and discussion, and the last part is conclusion.

2. METHODOLOGY

A. Direct Method and Tree-code Methods

The main problem of N-body simulation is how we

calculate the acceleration on each particle due to gravity

of other particles. Acceleration on each particle could be

described using Newtonian gravitational equation of

motion:

 (1)

where dots denote differentiation with respect of time, G

is gravitational constant, N is total number of particles, m

is mass of each particle, and r is the distance between

particles. In this simulation we put G = 1 and express

other parameters such as mass, distance, velocity, and

acceleration using arbitrary scaled units [9]. If we know

the initial position and velocity for each particle, there are

exist unique solution for eq. (1) to determine position and

velocity of particle at certain time. First, we use Direct

integration Method using Hermite scheme integrator to

perform N-body simulation [10]. This method is pretty

straightforward, gravity is calculated directly from eq. (1).

Then by using Hermite integrator we could find

numerical solution of velocity and position for each

particle at certain time-step. By doing this over and over,

we could get the velocity and position of the particle from

initial time to final time for every time-step. The

advantages of this method are that it is very accurate for

system that have equal mass. The accuracy could be

controlled easily by increase or decrease the time-step we

took. To put simply, if we want the simulation to have

high accuracy, we have to decrease the time-step as small

as possible, and vice versa. The problem is this method is

very resource demanding because for every iteration or

every time-step, the program needs to make calculation in

the order of O(N2). That mean for every N particle, the

program needs to calculate N2 times for every time-step.

When we want to make high accuracy simulation, we

need much more computational resource and it will take

much longer to simulate the system. But we could

sacrifice the accuracy for faster simulation time, the

simulation would still represent the physics of the system

at certain degrees but not as accurate.

The second simulation is done by using Tree-code

method. Tree-code method is more efficient in term of

computation time, because it only needs to do calculation

in the order of O (N log N) per time-step which is smaller

than the direct method. The downside of this method is

that this method is an approximation so there will always

be small force errors. This method also not great to

simulate collisional system where close encounters is

important. This method could provide fast calculation

because force from very distant particles does not need to

be calculated with very high accuracy.

B. Initial Condition and Simulation

For both methods we use same initial condition for the

position and velocity of particles. Plummer distribution is

used to generate position and velocity [11]. This

distribution usually used to represent spherical

distribution of globular star cluster of ellipse galaxy.

Plummer distribution is used because it simple to code

and still represent the physic of real system.

For the simulations we did two kinds of simulation.

First simulation is done to observe the computation time

increase as the number of particles increased. Table I

show the parameter that used in the first simulation. In the

simulation 1 (sim-1), the program will simulate the

system with N ranged from N=2 to N=50, where each run

the program will do 1000 iteration. We did the same with

simulation 2 (sim-2) and 3 (sim-3) but with different N

and number of iterations.

Journal of Multidisciplinary Academic RESEARCH ARTICLE

124

Table I. Parameters for the first simulation

The second simulation is to inspect the progression of

total energy of the system from both methods. For this

purpose, we chose the parameters as showed in Table II.

The parameters are chosen because it’s not too big or

small system and still represent the dynamic of N-body

system. To do this, for every iteration of the simulation

the program will calculate the total energy of the system

which is kinetics energy and potential energy. Then it will

compare the total energy of the system with the initial

energy, this way we get the energy loss of the system for

every iteration. As simulation progress the energy loss

will always be bigger after each time-step, so we want to

see how this error behave on direct methods and tree-code

method. This simulation is performed in personal

computer with high specification (Windows 10, Intel i5

4200U 1.6 ~ 2.3 GHz, RAM 8GB, GPU Nvidia GeForce

720M). All simulation is executed in roughly under 6

hours computing time.

Table II. Parameters for the second simulation

Parameters Value

Number of particles (N) 250

Time-step (dt) 0.5

End Time (t_end) 100

3. RESULTS AND DISCUSSION

For the first simulation, we run the simulation three times

with different N for each run. The initial condition for all

simulation is using Plummer distribution. For the

simulation 1 (Sim-1) The program will calculate the

simulation from N=2 and after each time-step it will

increase N by one until it reaches N=50. For each N value

the program did 1000 iterations. Figure 1 showed the

calculation time for every N for both direct and tree-code

method. We did the same run for Sim-2 (Figure 2) and

Sim-3 (Figure 3) but with different value of maximum N

and the number of iteration (see Table 1). It is obvious on

all three simulation that the computation time will

increase as the number of particles increased for both

methods. The difference between direct method and tree-

code is that the computation time on direct method will

follow quadratic curve, so it will be increase more rapidly

than the tree-code method, which follow logarithmic

curve. Except, in Sim-1 where the value N is still

relatively small, both direct and tree-code methods

performance is almost the same, in fact the direct method

performance is a little bit better and consistent.

In this domain, where the number of N is still small, the

tree-code method cannot take advantages of its method

yet because the particles is not too clumpy and the

distance for all particles is still relatively the same. The

tree-code method will take advantages of its method when

there are many particles clumping together, then it can be

treated as one particle by distant particle to reduce the

calculation operation. That is why in Sim-2 and Sim-3 it

clearly shown that as N increase the tree-code performs

better than the direct method. Because when the N

become large, particles tend to get close to each other due

to gravity. It is necessary to mention that in Sim-2 and

Sim-3 the computation time is almost the same even

though the Sim-3 simulate much larger N which double

than Sim-2. This happen due to the number of iterations

per N is different for both simulations. In Sim-2 the

number of iterations is 100 times, so for every N, it makes

100 times calculation. Then, in Sim-3 it only makes 20

iteration per N. For the illustration for N=500, Sim-2 will

make calculation 100×500 which is 50000 calculation per

time-step and for Sim-3 it will only make 20×500

calculation which is 10000 calculation per time-step. So,

for the same number of N, Sim-2 will make calculation 5

times more than the Sim-3, that is why the Sim-2 will

take much more computation time than Sim-3 in the same

number of N. If we took the ratio of the maximum

computation time for direct method and tree-code, we

found that in Sim-2 the ratio is tdirect : ttree = 2.5 : 1 and in

Sim-3 the ratio is tdirect : ttree = 4 : 1. That mean, in Sim-2

tree-code is 150% faster than direct method, and in Sim-3

tree-code is 200% faster than direct method. This mean as

the number of N increase, we see that tree-code method

become much faster than direct method or in another

word, the direct method become significantly slower.

Figure 1. Calculation time for N= 2 to N=50.

Figure 2. Calculation time for N= 5 to N=500 (Sim-2).

Parameters Sim-1 Sim-2 Sim-3

Number of

particles (N) 50 500 1000

Number of

iterations
1000 100 20

 RESEARCH ARTICLE Journal of Multidisciplinary Academic

125
 JoMA, Vol. 04, No. 02, 2020 No.0105/2020/05

Content from this work may be used under the terms

of the Creative Commons Attribution 3.0 license.

In the next simulation, we did the simulation using

parameters shown in Table II. We want to observe how

the total energy of the system, kinetic energy and

potential energy, change as the system evolving

dynamically. We did several simulations using Plummer

distributions for initial. The initial is generated randomly

for each simulation but still the same for both direct and

tree-code method. Figure 4 showed how the total energy

change on the system on each simulation. In all figures, it

appears that in direct method simulation, the total energy

difference changes rapidly in the early part of the

simulation. But this feature did not appear in tree-code

simulation. This could happen because energy spike like

this usually appear due to close encounter that happen in

the system. When we use direct method, it will calculate

all the close encounter that happen in the system, but in

tree-code this close encounter is not treated well and

calculated only using approximation. That is why in

almost all simulation the spikes-like feature appeared in

direct method simulation but not in the tree-code

simulation. In this these three simulations, the direct

method and tree-code perform relatively similar in term

of energy conservation. There is one case where the direct

method performs better (see Figure 4 (a)) and also one

case where tree-code is better (see Figure 4(c)). But

generally, the performance from both methods is the

same, in all simulation that has been done it show that

neither method outperform each other significantly.

Figure 3. Calculation time for N= 10 to N=1000 (Sim-3).

(a)

(b)

(c)

Figure 4. Total energy change of the system for three

simulation. (a) Simulation where total energy change in

direct method is smaller than tree-code, (b) total energy

change in both methods is almost equal, and (c) total

energy change in direct method is bigger than tree-code.

4. CONCLUSIONS

Performing simple N-body simulation using direct

method and tree-code in Python is very feasible to be

done. The biggest different between direct and tree-code

method is the time it spends on simulation. If our particle

is not that much, direct method is the choice because its

accuracy. But if we want fast calculation on many

particles system and willing to sacrifice some accuracy,

then the tree-code is wise choice. However, both methods

perform similar in term of energy conservation. So, this

kind of simple simulation could be used to give us more

physical insight about gravitational system rather than to

be used to accurately simulating the dynamic of real N-

body system.

References
1. Holmberg, Eric. (1941). On The Clustering Tendencies Among

The Nebulae. The Astrophysical Journal, Vol. 94, No. 3, p.285.

2. Aarseth, Sverre J. (1963). Dynamical evolution of clusters of

galaxies, I. Monthly Notices of the Royal Astronomical Society,

Vol. 126, p.223.

3. Aarseth, Sverre J. (1966). Dynamical evolution of clusters of

galaxies, II. Monthly Notices of the Royal Astronomical Society,

Vol. 132, p.35-65.

4. Aarseth, Sverre J. (1973). Computer Simulations of Star Cluster

Dynamics. Vistas in Astronomy, vol. 15, Issue 1, pp.13-37.

Journal of Multidisciplinary Academic RESEARCH ARTICLE

126

5. Aarseth, Sverre J. (1974). Dynamical evolution of simulated star

clusters. I. Isolated models. Astronomy and Astrophysics, vol. 35,

no. 2, p. 237-250.

6. Arca Sedda, Manuel. (2020). Dissecting the properties of neutron

star-black hole mergers originating in dense star clusters.

Communications Physics, Volume 3, Issue 1(43).

7. Aarseth, Sverre J. (1971). Direct Integration Methods of the N-

Body Problem. Astrophysics and Space Science, Volume 14,

Issue 1, pp.118-132.

8. Barnes, Josh & Hut, Piet. (1986). A hierarchical O(N log N)

force-calculation algorithm. Nature, Volume 324, Issue 6096, pp.

446-449.

9. Heggiew, D. C., Mathieu, R. D. (1986). Standardised Units and

Time Scales. Lecture Notes in Physics, Vol. 267, edited by P. Hut

and S. McMillan. Springer-Verlag, Berlin Heidelberg New York,

p.233.

10. Makino, Junichiro; Aarseth, Sverre J. (1992). On a Hermite

Integrator with Ahmad-Cohen Scheme for Gravitational Many-

Body Problems. Publications of the Astronomical Society of

Japan, v.44, p.141-151.

11. Plummer, H. C. (1911). On the problem of distribution in

globular star clusters. Monthly Notices of the Royal Astronomical

Society, Vol. 71, p.460-470

Received: 24 February 2020, Accepted: 01 May 2020

